0.99...9... ≠ 1
非正函數學中,有一個證明是這樣的:
]Prove.. 0.99...9... = 1
]If.. 0.99...9... = x
]10x = 9.99...9...
]10x - x = 9.99...9... - 0.99...9... = 9 = 9x
]x = 1 ......Proved
這個證明試圖說明循環小數0.99...9... 會與1 等值。
然而這個證明是錯誤的,在正函數學中,我們可以用極限的概念反駁上面的證明。
]Prove.. 0.99...9... ≠ 1
]If.. 0.99...9... = a
]a = lim(h→∞) Sum(k = 1 to h, 9 * 10^(-k))
]
]10a = lim(h→∞) Sum(k = 1 to h, 9 * 10^(-k)) * 10
]= lim(h→∞) Sum(k = 1 to h, 9 * 10^(-k + 1))
]= lim(h→∞) Sum(k = 0 to h - 1, 9 * 10^(-k))
]
]10a - a = 9a = lim(h→∞) Sum(k = 0 to h - 1, 9 * 10^(-k)) - Sum(k = 1 to h, 9 * 10^(-k))
]= lim(h→∞) Sum(k = 0 to 0, 9 * 10^(-k)) - Sum(k = h to h, 9 * 10^(-k))
]= lim(h→∞) 9 * 10^(-0) - 9 * 10^(-h)
]= lim(h→∞) 9 - 9 * 10^(-h)
]
]a = 9a / 9 = lim(h→∞) (9 - 9 * 10^(-h)) / 9 = lim(h→∞) 1 - 10 ^(-h)
]
]if (0.99...9... = 1) then..
]0.99...9... = a = 1
]a = lim(h→∞) a - 10^(-h)
]0 = lim(h→∞) -10^(-h)
]H = stone(x) (-10^x = 0) = stone(x) (10^x = 0 ||x ∈ Real||)
]Am(H) = 0 .......(0.99...9... = 1) is false
]Proved.. 0.99...9... ≠ 1